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The recently proposed theories of gravitation in the space of reference frames $ 
are based on a Lagrangian invariam with respect to the homogeneous Lorentz 
group. However, in theories of this kind, the Lorentz invariance is not a 
necessary consequence of some physical principles, as in the theories for- 
mulated in space-time, but rather a purely esthetic request. In the present paper, 
we give a systematic method for the construction of gravitational theories in the 
space ~, without assuming a priori the Lorentz invarianee of the Lagrangian. 
The Einstein-Caftan equations of gravitation are obtained requiting only that 
the Lagrangian is invariant under proper rotations and has particular transfor- 
marion properties under space reflections and space-time dilatations. 

1. I N T R O D U C T I O N  

Theories of gravitation defined on a principal fiber bundle (Choquet- 
Bruhat, 1968; Kobayashi and Nomizu, 1969), with base the space-time 
manifold and fiber the Lorentz group, were introduced many years ago 
and largely discussed by several authors (Trautman, 1970, 1973; Cho, 
1976; Mansouri and Chang, 1976). Their introduction becomes very na- 
tural if one considers gravitation as a special kind of gauge field theory 
(Utiyama, 1956; Kibble, 1961; Hehl et al., 1976). Recently, a Lagrangian 
formalism has been developed by Toller (!978) and independently by 
Ne 'eman and Regge (1978a, b), dealing with similar and also more general 
theories. 

In this formalism, the classical field theories are formulated in a space 
~,  whose points represent local inertial reference frames. The fields are 
functions of the points of $ ,  namely, they are functions of the reference 
frames. The motivation for taking this point of view was explained by 
Lurqat (1964) and by Toiler (1975, 1977). In Section 2 we summarize some 
results given by Toiler (1978, 1979) which we need. 

405 

002o-7748/80/06004Mo5503.00/0 �9 198o Plenum laubfi~hing Corporation 



4o6 

In the space of reference frames, one can treat matter fields (Toiler 
and Vanzo, 1978) as well as geometric fields describing gravitation or its 
generalizations (Toiler et al., 1979) and Yang-Mills fields (Zerbini et al., 
1978). The theories on $ satisfying automatically the principle of relativity, 
because, in this space, it is not possible to distinguish a priori one point 
from the other; all the local inertial reference frames are equivalent. As a 
consequence of this fact, the conservation laws of energy, momentum, and 
angular momentum follow without assuming the invariance of the 
Lagrangian with respect to the Lorentz group. 

All the Lagrangians on S studied until now and quoted above are 
Lorentz invariant. It seems to us that, at the moment, this symmetry is not 
justified from the operational point of view. In fact, the physical operations 
that define space translations are completely different from the ones that 
define time translations. In the same way, rotations and Lorentz boosts 
have a very different operational nature. 

The aim of this paper is to build up a theory of gravitation without 
requiring the Lagrangian on S to be Lorentz invariant. To limit the 
possible choices, we shall assume that the Lagrangian is invariant with 
respect to the proper rotation group and has the behavior suggested by 
physical requirements under space reflections and space-time dilatations. 
The first assumption is justified by the fact that transformations of the 
reference frames, which are related by means of a rotation (for instance 
two space translations in different directions), have similar operational 
definitions. In Section 3 we introduce the symmetries of the Lagrangian 
and in Section 4 we treat in detail the special case of rotation-invariant 
Lagrangians. In Section 5 we see finally that the Lagrangian that is 
physically meaningful is Lorentz invariant and gives rise to the usual 
theory of gravitation in the presence of torsion. We must emphasize that, 
in order to obtain this result, we assume that for the vacuum solutions of 
the theory the space S can be identified with te Poincar6 group. This does 
not mean that the Poincar6 group is a symmetry group of the Lagrangian. 
In fact, there is no Poincarr-invariant Lagrangian with the required 
vacuum solutions. From this point of view, the result obtained is surpris- 
ing. 

2. SHORT RESUME OF THE GENERAL FORMALISM 

In order to give a geometrical description of the gravitational phenom- 
ena, we consider the ten-dimensional space S of the local inertial reference 
frames. The geometry of S is described by ten vector fields Aa(a = 0 . . . . .  9), 
linearly independent at every point of S,  which represent infinitesimal 
transformations of the reference frames, or by ten differential one-forms 
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to '~ defined by the relation 

i~w 0 = 8~ (2.1) 

where by i~ we indicate the inner product operator corresponding to the 
vector field A~. 

In this space the dynamics is described by an action principle of the 
kind 

where S is an arbitrary four-dimensional compact submanifold of $ and X 
is a differential 4-forrn, called Lagrangian form, whose coefficients ~0v8 
are functions of the structure coefficients F2~ defined by means of the 
following equation: 

I J~'7 . a ^ . . ~  dw't--  - i . at3w / \w (2 .3)  

They are antisymmetric in the lower indices and satisfy the generalized 
Jacobi identity 

L,,F~v + LoFt, , + LvF~o= F~t~e ~ + F~vFnn, + Fvn,~Fnno (2.4) 

where by L~ we indicate the derivative along the direction individuated by 
the field A~. Here and in the following, the sum over repeated indices is 
understood. 

In the present paper we focus our attention on those theories that 
have the constant solution 

= (2 .5)  

in an empty region of the space where the density and the flow of energy, 
momentum, and spin angular momentum of matter vanish. The quantities 
/~v satisfy the Jacobi identity which follows from equation (2.4) and 
therefore they must be the structure constants of a Lie algebra. We 
suppose that they are the structure constants of the Poincar~ algebra. 

It has been shown (Toller, 1979) that the Lagrangian forms that 
provide the solution (2.5) must be of the kind 

where h' is any 4-form with a zero of order 2 at the point Fro---/~a, fir , 
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symmetric in the first two indices, are 550 arbitrary constants which have 
to satisfy the conditions 

+ + = 0 (2.7) 

(2F~ep Woov - 8 ~  ^Wpv o + 2F~/~̂ ~ l~ov)oa ~A~o/~Aoa v = 0 (2.8) 

^ 

and finally G~v are 450 constants given by 

e a r l y  ~-  1 ^ (2.9) 

where A~av is the completely antisymmetric part of G~av and can be 
neglected or arbitrarily choosen, because it does not affect the field 
equations. Equations (2.7) and (2.8) are not sufficient to determine all the 
quantities W~/~v and therefore, even if we ignore ~', there are plenty of 
Lagrangian forms which provide the solution (2.5) in an empty space. The 
natural way to limit the possible choices is to impose particular transfor- 
mation properties of the Lagrangian with respect to a symmetry group. In 
the next sections we shall see that, with a convenient choice of the group, 
the quantities ffzav are unambiguously determined. 

3. SYMMETRIES OF THE LAGRANGIAN F O R M  

This Section is devoted to the clarification of what we mean by 
symmetries of the Lagrangian in the space of reference frames. For this 
purpose, we consider a transformation of the type 

t o ~  C~o~ t~ (3.1) 

where C~ is a nonsingular constant matrix belonging to a group 9. We 
assume that under this transformation the Lagrangian transforms accord- 
ing to 

X~w(C))~ (3.2) 

where w(C) is a one-dimensional representation of the group 9. 
Here we are particularly interested in four kinds of transformations, 

which all belong to the group of automorphism of the Lie algebra of the 
Poincar6 group, i.e., the group of the matrices C which leave the structure 
constants F~a unchanged. In order to continue, some conventions are 
necessary. We use the double index Aa, where A and a take independently 
the values 1,2, 3, to cover the set 1 . . . . .  9. Moreover, we choose the vector 
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fields AAa in such a way that AA1 represent space translations, AA2 
represent space rotations, and An3 represent Lorentz boosts. Of course, A o 
represents time translations. 

The transformations that we take into consideration are the space 
reflections defined by 

co0___~wo, w A~___~(_ 1)~WA~ (3.3) 

the space-time dilatations given by 

co~ l~ ~ o~a2---)o~ A2, 09A1-">IogAI, 09A3-")09 A3, 14=0 (3.4) 

and finally the proper Lorentz group and the proper rotation group, which 
act on the forms o~ ~ according to the adjoint representation of the Poincar6 
group. The infinitesimal transformations are given by 

The infinitesimal parameters e4,es, e 6, namely, e Az describe the rotations, 
while the parameters e 7, es, e 9, namely, e a3 correspond to Lorentz boosts. 

Under the transformations (3.3) and (3.4) the Lagrangian transforms 
according to 

~--~p~, p = + 1 (3.6) 

~--*ld~ (3.7) 

respectively, and under the transformation (3.5) it remains unchanged. If 
we consider Lagrangian forms of the kind (2.6) with ~ '=  0, we see that 
equation (3.6) is true if the number of indices ot,fl,,I of the constant 

^ ^ 

quantities W,# v or G~ar, of the type A 1 or A3, is odd or even according to 
whether p -- - 1 or p = + 1. In the same way, one sees that equation (3.7) is 
verified if the number of indices ot,fl, y of the constants W~o v or G~ar, 
which take the values 0 . . . . .  3 is equal to d. 

The theories of gravitation in the space of reference frames studied 
until now were built up by requiring the Lagrangian form to be invariant 
with respect to the proper Lorentz group and to change its sign under the 
space reflections (3.3). The last requirement is a necessary condition for 
having the total energy invariant under this operation. If we impose these 
constraints on the Lagrangian (2.6) and we choose ~' =0,  we obtain the 
Ne'eman Regge Lagrangian form (5.6), which gives rise to the Einstein- 
Cartan equations. Under the dilatations (3.4) it transforms according to 
equation (3.7) with d = 2 ,  which is just the right behavior required by 
Newton's theory of gravitation, as we shall explain in detail in Section 5. 
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We recall that every infinitesimal transformation of the reference 
frame has an operational meaning, namely, it can be performed by means 
of precise physical operations, whose only purpose is to build up a new 
reference frame s infinitely near  to a preexistent one s 0. We stress that the 
symmetry transformations defined in this section have a different meaning. 
They do not act on the space of reference frames but on the space of 
infinitesimal transformations. For  instance, a rotation considered as an 
element of the symmetry group transforms an infinitesimal space transla- 
tion into another one, along a different direction. In a similar way, it 
transforms an infinitesimal rotation into another one and a Lorentz boost 
into another  Lorentz boost. Therefore, we see that a rotation transforms an 
infinitesimal transformation into another one, which has a similar opera- 
tional definition. This remark justifies, as we said in the Introduction, the 
assumption that the Lagrangian is rotationally symmetric. On the contrary, 
a Lorentz boost, considered as a symmetry operation, transforms a given 
symmetry operator into another  one, which has a completely different 
operational nature. After this analysis, it becomes natural to ask why one 
wants the Lagrangian invariant with respect to the whole Lorentz group. In  
fact, we give up this symmetry and keep only the rotational invariance, 
which still seems to us physically justified. 

4. R O T A T I O N - I N V A R I A N T  LAGRANGIAN F O R M S  

Following the program outlined in the Introduction, now we study the 
most general rotationally invariant Lagrangian form of the kind (2.6) with 

A 
)~'= 0. For  this aim, we build up the constant quantities Waa v in such a way 
that they are invariant with respect to the proper rotations and satisfy 
equations (2.7) and (2.8). The only constant ingredients that we can use are 
the Kronecker symbol dab and the completely antisymmetric Levi-Civi ta  
symbol eaB c .  Then, the nonvanishing components of Wat~v can be written 
in the form 

l~rOAaBb = VVrAaOBb ~--- WOab dAB 

 A~ = r 
 AaBbCc = ff+BbAaC  = Wa eABc 

(4.1) 

(4.2) 

(4.3) 

where Wo, b = Wao b, Wab o = Wba o, and w~,~ = - w~c are 24 arbitrary constants. 
F rom equation (2.7) we see that the number  of independent ones decreases 
to 17; we obtain in fact the seven relations 

Wo,a, + Wok + w,t,o -- 0 (4.4) 

Wabc + W~, + Wc~ = 0, a =/=b =/=c (4.5) 
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If  we want  our  theory  to have  the solution (2.5) in an  e m p t y  space,  the ^ 
quanti t ies  W~B v mus t  satisfy equa t ion  (2.8). In  order  to solve this equa t ion  
it is useful to write the nonvan ish ing  structure cons tants  F2~ of the 
Poincar6 group in the fol lowing manner :  

with 

^ 0  __ ^ 0  
F)a .~  - - F~Ao - ~ 6 . .  

^.4a ~ ~ A a  ~ f a  ,~ 
F o B b  - -  - -  ~ B b O ~ J O b ~ A B  

^Aa  __ ^Aa  __ a 
F~bcc-- -- Fg;Bb-- fLeABc 

(4.6) 

(4.7) 

(4.8) 

f ~  l = - - f ~  3 = 1 (4.9) 

f310 = - fd3 = 1 (4.10) 

f 1 2 =  f l l  ---" f 2 2 =  f 3 3 =  f # 2 =  - -  f 2 3 =  l (4.11) 

All the other  coefficients vanish.  A straightforward,  but  tedious calculat ion 
provides  1 1 other i ndependen t  relat ions be tween  the constants  Wo~,, w~, o, 
and  Wab c. T h e  final result is g iven by  

W131~-- - - W 3 1 1 = A  

W120 "~ W210 -~ - - A  (4.12) 

W021 -~ W201 m~A 

W121~" ~W21 l ~ B  

W13o = W31o = B (4.13) 

W031 ~" W301 ~ -- B - C 

W013 ~ Wl03 ~ C 

w133~ - - w 3 1 3 ~ D  

w230 ~-~ w320 ~-~ -- D (4.14) 

W023 ~ W203 ~ D 

w123m_ --w213~___ _ E  

w33 o = - 2 E  (4.15) 

W033 ~ W303 ~ E 

w233 = - w323 = F (4.16) 
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where A B, C, D, E, and F are arbitrary constants. We have grouped 
together the quantities which induce different rules of transformation on 
the relative Lagrangian under equations (3.3)and (3.4). From these equa- 
tions we see that there is a large number of nonvanishing rotational- 

^ 

invariant quantities W~p v, which provide a theory with the solution (2.5) in 
an empty space. Many of these choices give rise to theories that have 
unphysical solutions in an empty space and in the presence of matter. We 
must therefore impose other constraints on the Lagrangian form which 

^ 

limit the possible choices of W~av. 

5. GRAVITATIONAL LAGRANGIAN FORM 

In Section 3 we said that, in order to obtain the total energy invariant 
under the space reflections, the Lagrangian has to change its sign under 
this transformation. We do not want to give up this property of energy and 
therefore we take p = - 1 in equation (3.6). This means that the number of 
indices a, t ,  y of the quantities W~av of the type A 1 and A 3 must be odd. 
In Table I we put the parameters A, B, C, D, E, and F which can be 
different from zero if p has a given value. 

Since we always have Newton's theory of gravitation in our minds, we 
require that the Lagrangian form has the correct behavior suggested by 
this theory, under space-time dilatations. In order to obtain the value of d 
in equation (3.7), we resort to a simple dimensional reasoning. For simplic- 
ity, we use a units system in which the speed of light is equal to 1. We 
indicate the gravitational constant by x; its dimensions, given by Newton's 
theory, are 

[ ~ ] = [ mass ] - ' [ l eng th  ] (5.1) 

The Lagrangian form X has the dimensions of an action. We write it in the 
form 

l " a o 8 (5.2) 

TABLE I 

d ~ p  + 1 - 1 

0 F - -  

1 E D 

2 B , C  A 

3 - -  - -  
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where now ~ " 8  are its adimensional coefficients. Since the differential 
P Y  A 

forms toA2 and to 3 are adimensional according to their meaning, and too 
and toA1 have the dimensions of a length, we must have 

[X] = [mass] [length] = [ _Ix ] [length]d (5.3) 

where d is the number of indices a, r ,  y, 8 which take the values 0 . . . . .  3 and 
is the same as in equation (3.7). Then we get d =  2. In Table I we put the 
parameters which can be different from zero when d has a given value. We 

^ 

see that only the constants W~a v which derive from equation (4.12) have 
both the required properties p = - 1  and d =  2. They depend only on the 
parameter A. 

Now, it is very easy to build up the Lagrangian (2.6) with the constant 
^ 

quantities W~O v which depend only on the parameter A. Of course, the 
Lagrangian that one obtains is invariant with respect to the proper rotation 
group and transforms according to equation (3.6) with p = - 1  and equa- 
tion (3.7) with d = 2  under space reflections and space-time dilatations, 

^ 

respectively. If we choose A= 6 /x  and calculate the constants W~a v 
according to equations (4.1)-(4.3) we have 

W a r s  ~ ~ --3 ~'l  ~rljz~ 
K " a 1 6  ~ijrs (5.4) 

where now the Latin letters a,b . . . . .  h can take the values 4 . . . . .  9 and the 
letters i,j, k... can take the values 0 . . . . .  3. By means of equation (2.9), we 

^ 

can calculate also G~# v. If we choose the completely antisymmetric quanti- 
^ 1 l~rars, we get ties Aa, ~ = ~ 

8 o .  = 3 ~ (5.5) 
K ~ a16  ~ijrs 

From equations (5.4), (5.5), and (2.6) with ~ '=  0 we obtain the Lagrangian 
form 

1 .Fa ^ a  ^ i  lj ct f l  r s k=-~x{, ,q~-F~,t~)F~,g e0r, to Aw Ato Ato (5.6) 

which is the one proposed by Ne'eman and Regge (1978) and gives the 
Einstein-Cartan theory of gravitation (Hehl et al., 1976). As one can see 
immediately, this Lagrangian is Lorentz invariant. 

In conclusion, we have shown that, in order to describe gravitational 
phenomena, it is not necessary to assume a priori the Lagrangian form to 
be invariant with respect to the Lorentz group. We got in fact the usual 
theory of gravitation in the presence of torsion, assuming, besides the 
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exis tence of the Poincar6  v a c u u m  so lu t ion  (2.5), the  ro ta t iona l  inva r i ance  
a n d  some pa r t i cu la r  t r ans fo rma t ion  proper t ies ,  which are  jus t i f i ed  b y  
phys ica l  requirements ,  wi th  respec t  to space  ref lect ions  a n d  space- t ime  
di la ta t ions .  The  Loren tz  invar iance  of the  Lag rang ian  is an  a u t o m a t i c  
consequence  of these const ra in ts .  
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